
1 Resolving power definition

The job of a grating is to take light that is propagating along one direction, k̂i, and redirect it along another
wavelength-dependent direction

k̂f = k̂i − λG , (1)

where λ is the wavelength of the light, and G is a fixed scattering vector that is a property of the grating.
If the spatial frequency or wavenumber of the grating is ν,

G = mνx̂ , (2)

where m is the diffraction order, and x̂ is the grating’s periodic direction. Equation (1) is usually called the
grating equation.

For any real grating, the unique G is smeared out into a distribution of scattering vectors, Q, so that
Eq. (1) becomes 〈

k̂f

〉
= k̂i − λ ⟨Q⟩ , (3)

where ⟨· · ·⟩ is an average over the distribution, which is centered near G. As a result, the grating does not
direct each λ along a unique k̂f . If the width of the distribution is ∆Q, we can no longer resolve wavelengths
that are separated by less than

∆λ = λ
∆Q

G
. (4)

The resolving power of a grating is the dimensionless ratio

G

∆Q
=

λ

∆λ
. (5)

A grating’s resolving power is a key measure of its performance because it is an intrinsic property of the
grating. No matter how the grating is used, it cannot avoid mixing together wavelengths that are separated
by less than ∆λ, and therefore the resolving power of any optical system which includes a grating can never
exceed the intrinsic resolving power of that grating.

2 Measuring resolving power

The intrinsic resolving power of an ideal, diffraction-limited grating is

λ

∆λ
= GL , (6)

where L is the length of the grating. For a non-ideal grating, whose constituent grooves are displaced from
their ideal positions, the resolving power of the grating becomes a complicated function of G, and we must
determine the shape of the scattering-vector distribution empirically.

The scattering-vector distribution can be measured directly using a diffractometer, since the intensity of
radiation along a particular k̂f is given by the amplitude of

Q = λ−1
(
k̂i − k̂f

)
(7)

in the distribution. However, a direct measurement requires a diffractometer whose resolving power is
greater than the resolving power of the grating under test. Often, a better approach is to instead measure
the imperfect grating structure, and then calculate the scattering-vector distribution using the measured
structure.

To measure the grating structure, we employ a Fizeau interferometer. The method is reported elsewhere
[1, 3]. Briefly, visible-light interferometry is used to record aberrations across diffracted wavefronts from the
grating, which can be converted directly to imperfections in the grating structure. Concretely, we obtain the
number of grooves or periods, N(x), between position x on the surface, and a reference position.
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The groove-number function, N(x), is a fixed property of the grating which only needs to be measured
once. Then the scattering-vector distribution amplitude, S(Q), near the mth mode is

S(Q) ∝
∣∣∣∣∫ exp[iQx] exp[−imN(x)] dx

∣∣∣∣ , (8)

where the integration is over the length of the grating, and |· · ·| is the scalar norm [2].
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